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Abstract. Various ground-based observing techniques provide precipitable water vapor (PWV) products with different 

spatial resolutions. To effectively integrate these products, especially in terms of vertical orientation, spatial interpolation is 10 

essential. In this context, we have developed a model to characterize PWV variation with altitude in the study area. Our 

model, known as RF-PWV (a PWV vertical correction grid model with a 1° x 1° resolution), is constructed using random 

forest based on the relationship between PWV differences from the fifth-generation European Centre for Medium-Range 

Weather Forecasts reanalysis (ERA5) monthly average hourly data and height differences and time. When validated against 

1-h ERA5 PWV profiles, RF-PWV exhibits a 99.84% reduction in Bias and a 63.41% decrease in RMSE compared to the 15 

most recent model, C-PWVC1. Furthermore, when validated against radiosonde data, RF-PWV shows a 96.36% reduction in 

Bias and a 5% decrease in RMSE compared to C-PWVC1. Additionally, RF-PWV outperforms C-PWVC1 in terms of 

resistance to seasonal and height differences interference. The model eliminates the need for meteorological parameters, 

allowing for high-precision PWV vertical correction by inputting only time and height differences. Consequently, RF-PWV 

can significantly reduce errors in vertical correction, enhance PWV fusion product accuracy, and provide insights into PWV 20 

vertical distribution, thereby contributing to climate research. 

1 Introduction 

Precipitable water vapor (PWV), the most abundant greenhouse gas, primarily resides in the troposphere and plays a pivotal 

role in the global energy budget, hydrological cycle, and climate change (Zhang et al., 2018; Li et al., 2022b; Dessler and 

Sherwood, 2009; Raval and Ramanathan, 1989; Rocken et al., 1997). Various observation platforms, including radiosondes 25 

(RS), microwave water vapor radiometers (WVR), satellite remote sensing, ground-based global navigation satellite systems 

(GNSS), and reanalysis data, have amassed extensive PWV data through long-term data accumulation (Huang et al., 2022).  

Combining multi-source data enables more accurate and comprehensive water vapor monitoring and meteorological research 

(Zhang et al., 2019a; Li et al., 2022a; Alshawaf et al., 2015; Lindenbergh et al., 2009). However, inconsistent pressure levels 

(heights) for storing PWV data from different sources hinder the fusion and reliability analysis of PWV multi-source data. 30 

Therefore, precise PWV vertical corrections are indispensable for the utilization of PWV fusion products. Additionally, 

https://doi.org/10.5194/gmd-2023-201
Preprint. Discussion started: 5 December 2023
c© Author(s) 2023. CC BY 4.0 License.



2 

 

PWV vertical correction is essential for obtaining PWV's vertical distribution characteristics, which are crucial for weather 

forecasting and climate research. Hence, proposing a more accurate and applicable PWV vertical correction model is of 

paramount importance. 

Common methods for PWV vertical correction involve establishing empirical vertical correction models to enhance the 35 

applicability of PWV vertical correction (Emardson and Johansson, 1998; Dousa and Elias, 2014; Huang et al., 2023).Reitan 

(1963) introduced an empirical formula describing water vapor density's exponential decrease in the vertical direction, based 

on the relationship between PWV near the surface and at high altitudes. The PWV lapse rate (-0.5 mm/km), estimated by 

Kouba (2008) using the International GNSS Service (IGS) and the Vienna Mapping Function 1 (VMF1), has been widely 

adopted. However, considering the seasonal variations of the PWV lapse rate as constant introduces significant errors in 40 

PWV vertical correction (Tomasi, 1977; Leckner, 1978; Zhang et al., 2019b; Zhang et al., 2022). Huang et al. (2021) 

developed a PWV vertical correction model that accounts for seasonal variations in the PWV lapse rate, offering greater 

accuracy and stability than the classical PWV vertical correction model (PWV lapse rate = –0.5 mm/km) in China. Wang et 

al. (2022) incorporated spherical harmonic functions to develop a PWV vertical correction model, achieving high accuracy 

in the Qinghai-Tibetan Plateau. Nevertheless, many existing models assume PWV's exponential decrease and represent PWV 45 

lapse rate variations using periodic functions, failing to address complex nonlinear variations beyond daily/sub-daily and 

seasonal variations of the PWV lapse rate. 

Neural network techniques are well-suited for handling nonlinear problems and have found applications in various industries 

(Zheng et al., 2022). Machine learning has demonstrated promising potential in modeling tropospheric parameters (Ravuri et 

al., 2021; Lam et al., 2022). Senkal (2015) developed a model for predicting PWV in Turkey using a Resilient Propagation 50 

(RP) neural network, which provides PWV estimates for a given location. Validation with RS PWV data in the study area 

revealed good agreement between the new model and RS PWV data. Zhu et al. (2022) created a weighted mean temperature 

(Tm) vertical correction grid model (CTm-FNN) employing a feedforward neural network in China. This model 

outperformed the Chinese Tropospheric Model (CTrop) and Global Pressure and Temperature 3 (GPT3), reducing RMSE by 

86% and 83%, respectively. 55 

Therefore, this paper presents a vertical correction grid model (RF-PWV) for China and surrounding areas, harnessing 

Random Forest's powerful nonlinear fitting capability and the high temporal resolution of monthly average hourly PWV data. 

With RF-PWV, PWV differences can be obtained by simply inputting time and height differences, allowing for high-

precision PWV vertical correction. The model offers PWV vertical correction techniques for multi-source PWV fusion, 

weather forecasting, and climate studies. 60 

We begin by providing an overview of the study area and the experimental dataset. Subsequently, we describe the data 

processing strategy and modeling methodology. Next, we evaluate the performance of the RF-PWV model. Finally, we 

conclude our study and outline future directions. 
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2 Data and methods 

2.1 Study area 65 

The study area includes the region between 15°N and 55°N latitude and 70°E to 135°E longitude, covering mainland China 

and its surrounding areas, characterized by extensive land and ocean. China's topography exhibits significant variation, with 

higher elevations in the west gradually sloping to lower elevations in the east. Influenced by the monsoon climate, the 

summer monsoon brings substantial moisture from the ocean into the region, while winter introduces cold, dry air inland 

(Sun et al., 2019; Zhang et al., 2019c). These geographical and climatic factors contribute to a complex spatiotemporal 70 

variation in PWV. As a result, the vertical distribution of PWV in this area presents a challenging problem to characterize, 

making it a suitable choice for our experimental area. 

2.2 Datasets 

2.2.1 ERA5 PWV 

ERA5, the fifth-generation atmospheric reanalysis product developed by the European Centre for Medium-Range Weather 75 

Forecasts (ECMWF), offers access to 1-h meteorological data across 37 pressure levels, with a horizontal resolution as fine 

as 0.25° x 0.25°. This dataset can be downloaded from https://cds.climate.copernicus.eu/ (Albergel et al., 2018). ERA5 is 

renowned for its superior accuracy compared to its predecessor, ERA-Interim, and has gained widespread usage in 

meteorological research (Hersbach et al., 2020; Lu et al., 2023; Chen et al., 2023). Moreover, the monthly averaged dataset, 

in terms of accuracy, rivals the daily dataset while demonstrating greater stability (Dogan and Erdogan, 2022).  Additionally, 80 

the monthly average hourly dataset offers the advantage of capturing both seasonal variations in meteorological data and 

finer-grained sub-daily variations. In this study, we utilize the monthly average hourly dataset, which provides 1-h data at 37 

pressure levels with a spatial resolution of 1° x 1°. The PWV for each pressure level is determined through integration, as 

described by (Zhang et al., 2019d; Wang et al., 2016): 

𝑃𝑊𝑉 = ∑
(𝑞𝑖+𝑞𝑖+1)•(𝑝𝑖+1−𝑝𝑖)

2•𝜌𝑤•𝑔

𝑛−1
𝑖 ,          (1) 85 

𝑔 = 9.780325 • [
1+0.00193185•sin⁡(𝜑)2

1−0.00669435•sin⁡(𝜑)2
]
0.5

,         (2) 

where 𝑛 represents the total number of layers, 𝑞𝑖 and 𝑝𝑖 represent the specific humidity (kg/kg) and pressure (Pa) at the 𝑖 

layer, respectively; 𝜌𝑤 is the density of liquid water, which is standardized to 1,000 kg/m3; 𝑔 is the gravitational acceleration 

(m/s), 𝜑 denotes the latitude (rad). 

It is crucial to emphasize that the upper boundary of the troposphere lies at approximately 10 km altitude (Ding, 2020). 90 

Consequently, PWV effectively approaches 0 mm when situated at elevations exceeding 12 km vertically. As a result, we 

restrict our PWV calculations to cover pressure levels within the range of 0 to 12 km above the grid point for all subsequent 

analyses and investigations. 
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2.2.2 RS PWV 

RS are widely recognized for their high-precision PWV measurements and are commonly considered a reference standard 95 

for evaluating other measurement techniques (Adeyemi and Joerg, 2012; Wang et al., 2021; Zhao et al., 2022). We obtained 

RS PWV data from the Integrated Global Radiosonde Archive (IGRA), accessible at 

https://www1.ncdc.noaa.gov/pub/data/IGRA, with a temporal resolution of 12 h. We made use of meteorological data from 

148 stations, focusing on pressure levels within the 0 - 12 km altitude range (as illustrated in Figure 1). The specific 

humidity at each pressure level was determined by employing Eq (3) and (4), which are as follows (Zhai and Eskridge, 1997; 100 

Ross and Elliott, 1996): 

𝑒 =
𝑅𝐻•𝑒𝑠

100
,            (3) 

𝑞 =
0.622•𝑒

𝑝−0.378•𝑒
,            (4) 

where 𝑅𝐻 represents relative humidity (%),𝑒𝑠 signifies saturated vapor pressure (Pa), 𝑒 denotes water vapor pressure (Pa), 

and 𝑞 represents specific humidity (kg/kg). Subsequently, RS PWV values for various pressure levels were calculated using 105 

Eq (1). 

 

Figure 1. Distribution of the selected radiosonde sites. 

2.3 Establishment of the RF-PWV model 

The Random Forest is an ensemble learning method that uses multiple decision trees, initially introduced by Breiman and 110 

Cutler in 2001 (Breiman, 2001). It operates by constructing decision trees during the training process and subsequently 

averaging the results from all these trees. This method offers the advantage of rapid training and the capability to handle 

https://doi.org/10.5194/gmd-2023-201
Preprint. Discussion started: 5 December 2023
c© Author(s) 2023. CC BY 4.0 License.



5 

 

intricate nonlinear relationships between input and output variables. The equation governing Random Forest's prediction is 

expressed as follows: 

𝑌(𝑋) =
1

𝐵
∑ 𝑇𝑏(𝑋)
𝐵
𝑏=1 ,           (5) 115 

where 𝑌(𝑋) is the final prediction result, 𝑇𝑏(𝑋) represents the predicted value of each decision tree, and 𝐵  denotes the 

number of decision trees. The selection of an appropriate number of decision trees is pivotal in modeling; too few trees may 

lead to overfitting, while too many trees can result in excessively long modeling times (Sun et al., 2021; Probst and 

Boulesteix, 2017). 

2.3.1 Defining the primary parameter 120 

To assess the performance of machine learning models, 10-fold cross-validation is a commonly employed technique 

(Rodriguez et al., 2010; Zhang and Yao, 2021). In this context, 10-fold cross-validation was employed to ascertain the 

optimal number of decision trees based on Root Mean Square Error (RMSE). The fundamental principle of 10-fold cross-

validation entails dividing the input data into ten groups. Subsequently, nine randomly selected groups are utilized as the 

training set, and the remaining group serves as the test set. This process is reiterated ten times to ensure that all data is 125 

included in both training and testing. This approach provides results that closely approximate the accuracy of the final model 

while guarding against overfitting (Santos et al., 2018). Based on our experience, we experimented with decision tree 

numbers ranging from 5 to 95, with a step size of 10, to train the model and evaluate its performance under varying decision 

tree quantities (Li et al., 2023). The results, depicted in Figure 2, exhibit a significant decline in RMSE as the number of 

decision trees increases from 5 to 75, reaching a minimum at 75. However, increasing the number of trees to 75 does not 130 

significantly enhance accuracy, and it incurs longer training times. In consideration of the need for modeling at multiple grid 

points and balancing fitting quality with training time, a final decision was made to employ 55 trees for building the model. 
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Figure 2. Cross-validation RMSE in different numbers of decision trees 

2.3.2 Training the model 135 

During the model training phase, we performed individual modeling at each grid point (1° × 1°) using ERA5 monthly 

average hourly PWV data at pressure levels ranging from 1000 to 225 hPa, within the 0 - 12 km altitude range, spanning the 

years 2008 to 2017. The PWV differences (𝛥𝑃𝑊𝑉) and height differences (𝛥𝐺𝑃𝐻) for each pressure level relative to the 

bottom level were computed and utilized as the training dataset. In essence, each grid point contained 63,360 samples 

(22 × 24 × 12 × 10), and the region consisted of 2,706 grid points (66 × 41) at 1° × 1° resolution. The model, denoted as the 140 

RF-PWV model, characterizes the relationship between 𝛥𝑃𝑊𝑉 and 𝛥𝐺𝑃𝐻, as illustrated in Figure 3. The input data included 

year, day of the year (doy), hour of the day (hod), and 𝛥𝐺𝑃𝐻; the output data were 𝛥𝑃𝑊𝑉 When users employ the model, 

they are only required to provide the geopotential height of the target point, the reference PWV, the time (year, doy, hod), 

and the height difference of the target point concerning the datum point (𝛥𝐺𝑃𝐻). Then, the user can obtain the corresponding 

𝛥𝑃𝑊𝑉 and add reference PWV to the 𝛥𝑃𝑊𝑉 to get the PWV of the target height. 145 

 

Figure 3. Network structure of RF-PWV model based on random forest algorithm 

In the application of the RF-PWV model, the four grid points surrounding the target point are determined based on the target 

point's geographical coordinates (latitude and longitude). Subsequently, the target point. Then, the 𝛥𝑃𝑊𝑉  at the 

corresponding height of the four selected points is calculated using the RF-PWV model. Finally, the 𝛥𝑃𝑊𝑉 at the target 150 

point's location is determined through bilinear interpolation. This process involves calculating the difference between the 
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target point’s 𝐺𝑃𝐻 and the reference station’s 𝐺𝑃𝐻0 to get the 𝛥𝐺𝑃𝐻. Next, the time information is input into the models for 

the four nearest grid points to the target point, yielding the 𝛥𝑃𝑊𝑉 at the corresponding height of these grid points. Finally, 

bilinear interpolation is employed to calculate the 𝛥𝑃𝑊𝑉 at the target point's location. This method offers the advantage of 

not requiring an exceptionally strong spatial generalization ability for a single model. It comprehensively considers the 155 

relationship between the target point and the four nearest grid points within the limited spatial context, resulting in enhanced 

consistency and higher accuracy at each grid point, ensuring the overall model's robustness. 

3 Accuracy validation and analysis 

To validate the RF-PWV model, we employed hourly ERA5 and RS pressure level data from the study area in 2018, while 

also selecting a newly developed PWV vertical correction model (C-PWVC1) for comparison. The accuracy metrics 160 

employed for evaluation are Bias and RMSE, as outlined below: 

𝐵𝑖𝑎𝑠 =
1

𝑛
∑ (𝑋𝑖 − 𝑋𝑖

′)𝑛
𝑖=1 ,           (6) 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑ (𝑋𝑖 − 𝑋𝑖

′)2𝑛
𝑖=1 ,          (7) 

where 𝑋′is the reference values, 𝑋 denotes model outputs, and 𝑛 is the number of samples. 

3.1 Validation of RF-PWV using ERA5 PWV 165 

The RF-PWV model and C-PWVC1 were applied to vertically correct the hourly ERA5 bottom-level PWV data (1°×1°) for 

the year 2018 to other pressure levels within the 0 - 12 km altitude range, excluding the bottom level. The results were then 

compared with ERA5 data, and the overall Bias and RMSE are presented in Table 1. RF-PWV exhibited a Bias close to 0 

mm, indicating minimal systematic Bias between the interpolated PWV and ERA5 PWV. Moreover, it reduced Bias by 1.42 

mm compared to C-PWVC1, corresponding to a remarkable optimization of 99.84%. The Bias values for RF-PWV were 170 

observed to fluctuate slightly within the range of –0.01 to 0.01 mm. Additionally, the RF-PWV RMSE showed a substantial 

reduction of 63.40% compared to C-PWVC1. Furthermore, the RMSE values for RF-PWV demonstrated a more stable 

fluctuation pattern with a considerably narrower range. Overall, RF-PWV exhibited significantly higher accuracy than C-

PWVC1, with corrected results showing better agreement with the reference values. 

Table 1 Validation results of the RF-PWV and C-PWVC1 models tested by ERA5 data 175 

Model 
Bias (mm) RMSE (mm) 

Mean Min Max Mean Min Max 

RF-PWV 0.00 -0.01 0.01 0.75 0.39 1.22 

C-PWVC1 1.42 -0.96 3.65 2.05 0.72 4.25 
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To provide a spatial illustration of the models' accuracy consistency, Figure 4 displays the Bias and RMSE values for each 

grid point for both RF-PWV and C-PWVC1. Notably, C-PWVC1 exhibited a significant north-south difference in Bias, with 

larger values in the south and smaller values in the north. Most areas displayed a positive Bias, except for a pronounced 

negative Bias in the Qinghai-Tibetan Plateau. In contrast, RF-PWV demonstrated a substantial reduction in Bias across 

almost all grid points in the study area, approaching 0 mm, effectively eliminating the north-south discrepancy. The most 180 

noteworthy improvement in accuracy was observed in the Qinghai-Tibet Plateau and low-latitude regions. Despite the 

challenging climate conditions in the Qinghai-Tibet Plateau and the strong land-sea interactions in the study area's low 

latitudes, which contribute to complex PWV variations, RF-PWV still achieved a Bias close to 0 mm. These results highlight 

RF-PWV's adaptability to diverse weather conditions and its wide applicability. Furthermore, C-PWVC1 displayed a north-

south difference in RMSE, with values gradually decreasing from south to north. Higher RMSE values were concentrated in 185 

the southwestern and southeastern regions, reaching a maximum of 4.25 mm. This phenomenon is mainly attributable to the 

proximity of these regions to the ocean, frequent water vapor exchange between land and sea, and the complexity of PWV 

variations. However, RF-PWV's RMSE in these regions was significantly smaller than that of C-PWVC1, consistently 

measuring below 2 mm. Overall, RF-PWV's RMSE was lower than that of C-PWVC1 across the study area. Furthermore, 

RF-PWV exhibited excellent agreement, with values mostly hovering around 0.75 mm, nearly independent of spatial 190 

variations. These outcomes underscore the higher accuracy and improved spatial accuracy consistency of RF-PWV across 

the study area. 
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Figure 4. Distributions of Bias and RMSE for the RF-PWV and C-PWVC1 with respect to the ERA5 data 

To further evaluate the models' performance across different seasons, we calculated the Bias and RMSE values for four 195 

representative grid points using data from 2018. These grid points were selected to represent various regions: (80.00°E, 

40.00°N) in the northwestern region, (95.00°E, 15.00°N) in the southwestern region, (110.00°E, 25.00°N) in the southeastern 

region, and (125.00°E, 45.00°N) in the northeastern region. Figures 5a, 5b, 5g, and 5h illustrate that C-PWVC1 exhibited the 

highest Bias and RMSE values during June-September, reaching 5.41 mm and 6.23 mm at (80.00°E, 40.00°N) and 6.85 mm 

and 7.75 mm at (125.00°E, 45.00°N), respectively. Conversely, the lowest Bias and RMSE values were recorded during 200 

January-February and November-December, hovering around 0 mm, with discernible seasonal fluctuations. This pattern is 

primarily attributed to significant PWV variations during the wet and rainy northern summers, contrasted with relatively 

mild PWV variations during the cold and dry winters. In contrast, Figures 5c, 5d, 5e, and 5f show that the seasonal 

differences in Bias and RMSE for C-PWVC1 were less pronounced in the southern regions than in the northern regions. At 

(110.00°E, 25.00°N), which experiences abundant PWV changes and heavy rainfall throughout the year, the model's 205 

accuracy was relatively lower, with no noticeable seasonal variations. Similarly, near the equator (95.00°E, 15.00°N), overall 

Bias and RMSE values were more significant, with minimal seasonal differences. RF-PWV exhibited seasonal variations 

characterized by lower accuracy in summer and higher accuracy in winter across the northern study area, consistent with C-

PWVC1 but with smaller variations. Notably, RF-PWV achieved substantially lower Bias and RMSE values than C-PWVC1 
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during the summer months. Figures 5a, 5b, 5g, and 5h demonstrate that RF-PWV effectively reduced Bias and RMSE at grid 210 

points in the northern region (80.00°E, 40.00°N; 125.00°E, 45.00°N), with Bias reductions of 98.84% and 99.10% and 

RMSE reductions of 58.47% and 72.99%, respectively. Throughout the year, RF-PWV's Bias and RMSE exhibited relatively 

stable patterns, with minimal fluctuations around 0 mm. Conversely, Figures 5c, 5d, 5e, and 5f reveal that RF-PWV 

maintained Bias and RMSE values around 0 mm, offering greater accuracy compared to C-PWVC1 in the southern grid 

points. In summary, RF-PWV exhibited enhanced resistance to seasonal variations, maintaining stable and accurate 215 

performance throughout the year across the study area. 

 

Figure 5. Time series of RF-PWV and C-PWVC1 Bias and RMSE on four selected grid points 

Given that more than three-quarters of the water vapor is concentrated in the lower atmosphere, in practice, most of the 

vertical correction of PWV occurs in the lower atmosphere (Yang et al., 2020).  Bias and RMSE for C-PWVC1 and RF-220 

PWV are statistically determined based on height differences, divided into 12 sections ranging from 0 to 6 km with intervals 
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of 0.5 km. This division helps assess the applicability of the two models across different height segments. The results are 

presented in Figure 6. Notably, C-PWVC1 exhibits a positive Bias in every height difference segment, with the Bias 

increasing as the height difference rises from 0 to 2.5 km, ultimately stabilizing at around 2.0 mm. RF-PWV Bias tends to 

approach 0 mm within the height difference of 0 to 2.5 km but shows a negative Bias beyond this range, with the absolute 225 

value increasing and reaching a maximum value of less than 0.2 mm. In each height difference segment between 0 to 6 km, 

RF-PWV Bias is closer to 0 mm than C-PWVC1 Bias, indicating that the corrected value of RF-PWV is more consistent 

with the reference value across different height difference segments. Additionally, RF-PWV RMSE is significantly smaller 

than C-PWVC1 in all height difference segments. The RMSE for C-PWVC1 exhibits the same increasing trend as Bias, 

stabilizing around 3 mm after the height difference exceeds 2.5 km. In contrast, the RF-PWV RMSE is less than 1 mm in all 230 

height difference segments. These findings demonstrate that RF-PWV offers improved correction effectiveness and higher 

accuracy compared to C-PWVC1. Consequently, RF-PWV exhibits superior performance and greater accuracy consistency 

within each height difference segment, indicating that it is less influenced by variations in height difference. This enhanced 

adaptability to height differences enables a finer-scale description of the vertical distribution of PWV. 

 235 

Figure 6. Accuracy of RF-PWV and C-PWVC1 in each height difference with respect to ERA5 data. 

3.2 Validation of RF-PWV using RS PWV 

To further validate the applicability of RF-PWV, the PWV data for all pressure levels within the 0–12 km altitude range 

from 148 RS stations in 2018 were used to assess the accuracy of RF-PWV and C-PWVC1. Since the sounding stratified 

data are not uniformly distributed vertically, the variation of PWV with elevation was fitted using an exponential function 240 
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based on the 2018 PWV data from each sounding station. Using the fitting results, the PWVs of neighboring levels were 

interpolated using inverse distance weighting (IDW) to generate a sequence of PWVs within the range of 0–12 km with 

intervals of 500 m. This sequence of PWVs served as reference values. For each RS station, the four grid points (1° × 1°) in 

proximity were selected, and the output   of these four grid point models was bilinearly interpolated to the RS station to 

obtain the RF-PWV result. To account for systematic Bias between modeling data and RS data, the average difference 245 

between the corrected RF-PWV value and the corresponding original value was computed as the systematic bias for each 

level at the RS station. Finally, the statistical accuracy of RF-PWV and C-PWVC1, after eliminating the systematic bias, is 

presented in Table 2. 

Table 2. Validation results of the RF-PWV and C-PWVC1 models tested by RS data 

Model 
Bias (mm) RMSE (mm) 

Mean Min Max Mean Min Max 

RF-PWV 0.05 -0.25 0.33 2.59 0.94 4.89 

C-PWVC1 1.36 -6.62 3.46 2.71 0.72 16.55 

Table 2 reveals that the accuracy of C-PWVC1 is significantly lower than that of RF-PWV. C-PWVC1 exhibits a Bias of 250 

1.36 mm, ranging from –6.62 to 3.46 mm, whereas RF-PWV Bias is only 0.05 mm, reduced by 1.31 mm and improved by 

96.36%. The range of variation is notably reduced to –0.25 to 0.33 mm. Moreover, RF-PWV RMSE is considerably smaller 

and more stable, with RMSE reduced to 2.59 mm, ranging from 0.49 to 4.89 mm, corresponding to a decline rate of 

approximately 5% compared to C-PWVC1. Consequently, RF-PWV demonstrates superior accuracy and stability in vertical 

PWV correction at 148 RS stations in the study area. 255 

The Bias and RMSE for each RS station are also computed to further illustrate the application capabilities of the two models, 

as shown in Figure 7. As depicted in Figure 7a and b, C-PWVC1 exhibits a positive Bias on almost all stations except for the 

RS stations in the Yunnan-Guizhou Plateau, where the Bias is less pronounced. In contrast, RF-PWV Bias is consistently 

less than 0.5 mm and closer to 0 mm. Compared to C-PWVC1, the absolute value of RF-PWV Bias is effectively reduced in 

the Yunnan-Guizhou Plateau region, with the most significant reduction reaching 3.13 mm. Meanwhile, positive Bias in 260 

other areas is also reduced to varying degrees. Figure 7b and d demonstrate that RF-PWV RMSE exhibits a certain degree of 

reduction compared to C-PWVC1, with the most substantial decline occurring in the sites located in the Yunnan-Guizhou 

Plateau. In this region, the corresponding RMSE for C-PWVC1 is consistently larger than 8 mm, with a maximum value of 

16.54 mm. In contrast, RF-PWV RMSE at all RS stations is less than 5 mm, with a maximum RMSE reduction of 11.65 mm. 

Given the complex terrain and significant undulations in the Yunnan-Guizhou Plateau, where the difference in height 265 

between the target point and the reference grid can be up to 1–2 km (Chen et al., 2011). Therefore, RF-PWV demonstrates 

superior performance and more stable accuracy compared to C-PWVC1 across the entire study area. This advantage is 

particularly pronounced in regions with significant variations in height. 
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Figure 7. Distributions of Bias and RMSE for the RF-PWV and C-PWVC1 with respect to the RS data 270 

The Bias and RMSE of RF-PWV and C-PWVC1 were also statistically analyzed for each month to assess the models' 

performance under different seasonal conditions. These results are presented in Figure 8. Notably, C-PWVC1 exhibits 

positive Bias in every month, indicating both systematic bias and clear seasonal variations. The Bias is minimal during 

winter (January, February, and December), with December showing the lowest value at 0.62 mm, while it reaches its peak 

during summer (June, July, and August), with a maximum value of 3.05 mm observed in August. In contrast, RF-PWV Bias 275 

demonstrates improvement in every month compared to C-PWVC1. Both models exhibit seasonal variation characteristics, 

with lower accuracy during summer and higher precision in winter. This seasonal variation is attributed to the warm and 

humid weather with abundant rainfall in summer, leading to significant PWV fluctuations. Nevertheless, RF-PWV still 

shows notable Bias optimization compared to C-PWVC1. Winters are typically drier and experience less rainfall, resulting in 

relatively smoother PWV changes. Consequently, both models can accurately capture PWV variations during this period, 280 

with RF-PWV having a distinct Bias advantage. Furthermore, the RMSE of RF-PWV and C-PWVC1 exhibits similar 

variations to Bias. While RF-PWV RMSE is slightly larger than that of C-PWVC1 in late autumn and winter, it is smaller 

than C-PWVC1 in other months, particularly during summer and early autumn. RF-PWV's advantage becomes more 

pronounced when dealing with spatio-temporal PWV variations that are more drastic. It is important to note that differences 

between validation results based on radiosonde and ERA5 data may be attributed to certain systematic deviations between 285 
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radiosonde and ERA5 data. In summary, RF-PWV demonstrates superior performance in vertical PWV correction under 

various seasonal conditions. 

 

Figure 8. The Bias and RMSE each month from the RF-PWV and C-PWVC1. 

To further evaluate the models' application in the vertical direction, the Bias and RMSE of RF-PWV and C-PWVC1 in 290 

different height difference segments were examined, and the results are depicted in Figure 9. In Figure 9a and c, for C-

PWVC1, when the height difference is less than 0 km, the Bias and RMSE are –1.81 mm and 2.89 mm, respectively. As the 

height difference increases, both Bias and RMSE increase as well. When the height difference exceeds 2.5 km, the Bias 

stabilizes at 2 – 2.5 mm, while the RMSE remains around 3.5 mm. RF-PWV demonstrates higher accuracy and stability 

across all height difference segments, with Bias approaching 0 mm and RMSE being smaller than that of C-PWVC1. Figure 295 

9b and d depict the improvement rates of the absolute values of Bias and RMSE for RF-PWV compared to C-PWVC1 

(Positive values indicate improvement). The absolute value of Bias exhibits an improvement rate of over 80%, with the 

maximum value approaching 100%. Meanwhile, the improvement rate of RMSE is significantly larger when the height 

difference is less than 3.5 km; it decreases slightly when the height difference exceeds 3.5 km but still remains around 5%. In 

summary, RF-PWV offers higher vertical correction accuracy and improved stability across various height differences, 300 

demonstrating its strong applicability at different elevations. 
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Figure 9.Variation of Bias and RMSE with height differences (a, c) and improvement rates of the absolute values of Bias and 

RMSE (b, d). 

4 Conclusions and outlooks 305 

Modeling accurate PWV vertical corrections benefits PWV fusion and provides detailed PWV vertical distribution 

information for meteorological studies. The complex terrain in China, characterized by varying climates and frequent water 

vapor exchanges, makes it challenging to accurately capture PWV variations at different heights. Consequently, this paper 

aims to develop a high-precision vertical PWV correction grid model. The primary contributions of this research can be 

summarized as follows: 310 

(1). We establish a PWV vertically corrected grid model (RF-PWV) with a resolution of 1°×1° by integrating RF and 

monthly averaged hourly PWV data. This model utilizes RF to estimate the vertical variation of PWV at each grid point and 

demonstrates excellent applicability within a 6 km height difference. It effectively approximates PWV vertical changes. 

Validation against ERA5 data reveals that RF-PWV reduces Bias and RMSE by 99.84% and 63.40%, respectively, 

compared to C-PWVC1. RS validation also shows reductions of 96.36% in Bias and 5% in RMSE compared to C-PWVC1. 315 

Furthermore, RF-PWV exhibits robust resistance to seasonal and height differences interference. 

(2). RF is employed to model each grid point (1°×1°), with the grid serving to decompose spatial variations and confine RF 

within the corresponding grid point. This simplifies the features of training samples for each grid point RF, potentially 

reducing the likelihood of RF getting stuck in a local optimum. Simultaneously, during training, issues with a particular grid 

will not impact the models of other grid points; thus, enhancing modeling efficiency. This approach also eliminates concerns 320 

about spatial generalization ability and ensures relatively stable accuracy across all grid points, contributing to the model's 

robustness. 
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Comprehensive validation demonstrates that RF-PWV can more accurately provide PWV vertical corrections in China and 

its surrounding areas. This model holds great potential for PWV vertical correction and is well-suited for delivering detailed 

PWV vertical distribution information for multi-source water vapor fusion and meteorological research. Consequently, this 325 

method can be used to develop a globally applicable vertical correction model with higher accuracy, benefiting a wider range 

of users. 
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